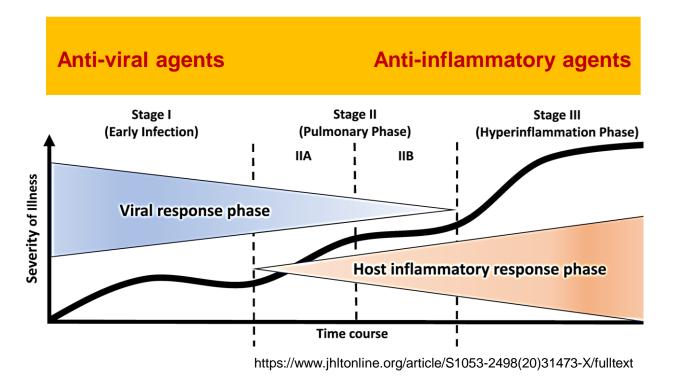
Available Therapies and Vaccination in COVID-19 patients with Kidney Disease

Liise-anne Pirofski, MD
Chief, Division of Infectious Diseases
Albert Einstein College of Medicine & Montefiore Medical Center

No Disclosures

Covid-19 therapy: Attacking the virus and the inflammatory response

Coronavirus pandemic


Coronavirus whistleblower doctor dies in Wuhan hospital

Passing of Li Wenliang sparks outpouring of grief and anger in China

Li Wenliang raised the alarm over some new pneumonia cases in an online chat group with medics that was shared widely

James Kynge in Hong Kong and Nian Liu in Beijing FEBRUARY 6 2020

FDA approved therapy for Covid-19

Remdesivir

- Anti-viral approved 10/2020
 - Prodrug adenosine analog inhibitor of viral RNA polymerase
- Effect: Shorter time to improvement, symptomatic improvement.
- Indication: Oxygen requirement (non-invasive ventilation).
- Not recommended: creatinine clearance <30 mL/min, renal replacement therapy.

https://www.mdpi.com/2218-0532/88/2/29/htm

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

NOVEMBER 5, 2020

VOL. 383 NO. 19

Remdesivir for the Treatment of Covid-19 — Final Report

J.H. Beigel, K.M. Tomashek, L.E. Dodd, A.K. Mehta, B.S. Zingman, A.C. Kalil, E. Hohmann, H.Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R.W. Finberg, K. Dierberg, V. Tapson, L. Hsieh, T.F. Patterson, R. Paredes, D.A. Sweeney, W.R. Short, G. Touloumi, D.C. Lye, N. Ohmagari, M. Oh, G.M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, M.G. Kortepeter, R.L. Atmar, C.B. Creech, J. Lundgren, A.G. Babiker, S. Pett, J.D. Neaton, T.H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, and H.C. Lane, for the ACTT-1 Study Group Members*

Repurposed drugs for Covid-19

Dexamethasone

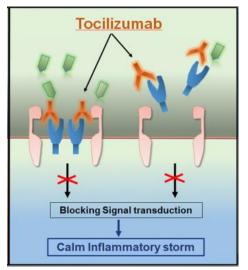
- Anti-inflammatory drug
- RECOVERY trial
 - Reduced mortality:
 Mechanical ventilation,
 oxygen support.

Tocilizumab

- IL-6 inhibitor
- RECOVERY trial
 - Reduced mortality: Hypoxia (O₂<92%), including those on corticosteroids.

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812


FEBRUARY 25, 2021

VOL. 384 NO. 8

Preliminary report July 2020

Dexamethasone in Hospitalized Patients with Covid-19

The RECOVERY Collaborative Group*

https://translationalmedicine.biomedcentral.com/articles/10.1186/s 12967-020-02339-3 Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial www.thelancet.com Vol 397 May 1, 2021

Recover

"Replacement"

COVID-19

patient

Covid-19 convalescent plasma (CCP)

Prophylaxis

COVID-19

exposure

Plasma

FDA emergency use authorization (EUA): August 2020, revised February 2021

Therapy

COVID-19

patient

https://www.fda.gov/media/141478/download

- Hospitalized patients only.
- High titer SARS-CoV-2 IgG.
- Used early, non-intubated.
- Later in humoral immunodeficiency.

https://www.jci.org/articles/view/13976012 Antibody response Later convalescent plasma therapy Early convalescent plasma therapy neutralizes SARS-CoV-2 and enhances neutralizes SARS-Cov-2 and possibly the developing immune response by modulates immune function ADCC, complement activation, and possibly immune modulation 10 14 16 Anti-viral effect Immune modulation

Day of infection

Antibodies

https://www.jci.org/articles/view/138003

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

N Engl J Med 2021;384:610-8.

Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults

R. Libster, G. Pérez Marc, D. Wappner, S. Coviello, A. Bianchi, V. Braem, I. Esteban, M.T. Caballero, C. Wood, M. Berrueta, A. Rondan, G. Lescano, P. Cruz, Y. Ritou, V. Fernández Viña, D. Álvarez Paggi, S. Esperante, A. Ferreti, G. Ofman, Á. Ciganda, R. Rodriguez, J. Lantos, R. Valentini, N. Itcovici, A. Hintze, M.L. Oyarvide, C. Etchegaray, A. Neira, I. Name, J. Alfonso, R. López Castelo, G. Caruso, S. Rapelius, F. Alvez, F. Etchenique, F. Dimase, D. Alvarez, S.S. Aranda, C. Sánchez Yanotti, J. De Luca, S. Jares Baglivo, S. Laudanno, F. Nowogrodzki, R. Larrea, M. Silveyra, G. Leberzstein, A. Debonis, J. Molinos, M. González, E. Perez, N. Kreplak, S. Pastor Argüello, L. Gibbons, F. Althabe, E. Bergel, and F.P. Polack, for the Fundación INFANT-COVID-19 Group*

BRIEF COMMUNICATION

Treatment with convalescent plasma in solid organ transplant recipients with COVID-19: Experience at large transplant center in New York City

13 patients

- 5 kidney,
- 1 liver-kidney, 1 kidney-pancreas
- 4 liver
- 1 heart
- 10 steroids, 8 tacrolimus, 6 MMF

Time to treatment

5-31 days symptoms (median 8)

Outcomes

- 8 required less O₂ on day 7
- 9 discharged, 1 in hospital
- 3 died treated late, ventilated/ICU

CCP had anti-inflammatory effect

Lab (median)	Pre-infusion (at day 0)	Post-Infusion (at day 7)
C-reactive protein (mg/L)	124 (range	58.5 (range
Normal 0-5	24.2-457)	14.3-307.5)
Procalcitonin (ng/mL)	1.54 (range	0.315 (range
Normal < 0.49	0.29-14.2)	0.02-4.29)
D-dimer (ug/mL)	2.63 (range	2.835 (range
Normal 0-0.5	0.41-16.64)	0.48-8.85)
Ferritin (ng/mL)	1096 (range	805 (range
Normal 30-400	76-14 614)	119-15 621)

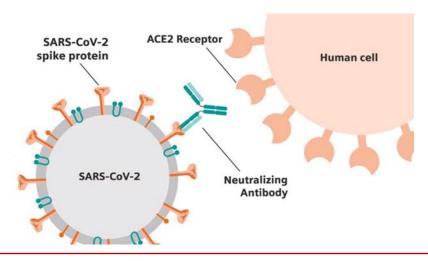
https://onlinelibrary.wiley.com/doi/full/10.1111/ctr.14089

Feasibility of Convalescent Plasma Therapy in Kidney Transplant Recipients With Severe COVID-19: A Single-Center Prospective Cohort Study

Akash Gupta,¹ Vivek B. Kute,¹ Himanshu V. Patel,¹ Divyesh P. Engineer,¹ Subho Banerjee,¹ Pranjal R. Modi,² Syed J. Rizvi,² Vineet V. Mishra,³ Ansy H. Patel,⁴ Vijay Navadiya¹

Table 3. Clinical Sympton	ns and Labora	tory Investiga	tions at Days	0, 1, and 7 of	Convalescent	Plasma Trans	fusion				
Characteristic				Patier	nt Number						•
	1	2	3	4	5	6	7	8	9	10	
Fever											
Before plasma	+	+	-	+	-	+	+	+	+	+	
After plasma	-	-	-	-	-	-	-	-	-	-	
Pao ₂ /Fio ₂ , mm Hg											1
Before plasma	124	140	136	153	110	130	70	156	92	116	Incressed O2
After plasma	310	352	412	324	284	305	N/A	349	416	364	Increased O2
hsCRP, mg/L											
Before plasma	173.1	158.6	159.4	91.4	140	164.1	204	63.8	90.2	89	
After plasma (D1)	19.9	23.7	27.9	23.6	45	39.5	145.8	22.7	35.7	34.5	Decreased CRF
After plasma (D7)	2.1	8.5	3.2	6.4	7.1	5.8	N/A	11.6	8.7	9.6	
IL-6, pg/mL											
Before plasma	116.8	191.4	111.4	318.7	255.3	318.5	198	110	104	167	Decreased IL-6
After plasma (D1)	59.95	36.23	17.91	121	41.5	165	78.8	34	24.54	28.59	Dedicased IE 0
After plasma (D7)	1.8	23.48	9.73	21.4	6.7	28.1	N/A	6.68	8.28	7.8	

Experimental and Clinical Transplantation (2021) 4: 304-309



SARS-CoV-2 monoclonal antibodies

- Anti-viral mechanism
 - Bind spike protein block viral entry
- FDA EUAs for outpatient use
 - bamlanivimab/etesevimab (Lilly)
 - casirivimab/imdevimab (Regeneron)
- Efficacy
 - Reduce hospitalizations, severe disease
 - Especially in seronegative people
- Indications (adults)
 - SARS-CoV-2 positive
 - Symptoms ≤ 10 days
 - Not hospitalized
 - High risk for severe Covid-19
 - Body mass index (BMI) ≥35
 - CKD, immunocompromising condition, DM, ≥65
 - ≥55 with: Cardiovascular disease, *or* Hypertension, *or* COPD, *or* respiratory disease

bamlanivimab/etesevimab: Human IgG1k - overlapping spike epitopes https://jamanetwork.com/journals/jama/fullarticle/2775647
https://www.fda.gov/media/145801/download

casirivimab/imdevimab: Human IgG1κ - different spike epitopes https://www.fda.gov/media/143892/download

https://www.nejm.org/doi/full/10.1056/NEJMoa2035002

Clinical Transplantation. 2021;35:e14245. https://doi.org/10.1111/ctr.14245

Bamlanivimab for treatment of COVID-19 in solid organ transplant recipients: Early single-center experience

TABLE 1 Characteristics of Solid organ transplant recipients treated with Bamlanivimab

Age(years)/sex/ transplant type	Symptoms/days	Chest X-ray	SpO2 on ambient air	Other risk factors for progression	Follow-up (days)
58/M Liver	Nasal stuffiness 6 days	N/A	98%	Cardiac disease, Diabetes	2 7
60/M Liver	Cough 10 days	N/A	97%		27
56/M Kidney	Fever, Malaise 2 days	N/A	96%	BMI – 35 Diabetes, CKD	27
66/M Liver/kidney	Cough, SOB 3 days	Bilateral opacities	92%	Age >65 years	24
40/M Kidney	Fever, cough, diarrhea, malaise 1 day	Bilateral opacities	93%	Cardiac disease, CKD	21
51/M Heart	Fever, cough, nasal stuffiness 1 day	N/A	96%		20
62/M Kidney	Cough, nasal stuffiness 3 days	N/A	93%	Cardiac disease, Diabetes	20
55/M Kidney	Fever, cough 4 days	Clear	97%		20
41/M Kidney	Fever, malaise 1 day	N/A	98%		17
39/M Kidney	Loss of smell, malaise 2 days	N/A	96%	BMI - 35	14

- 11 SOT recipients
 - 5 kidney, 1 kidney/liver
- Interventions
 - Stopped/lowered MMF (40%)
 - Lowered calcineurin inhibitor (70%)
- Outcome
 - None required hospitalization

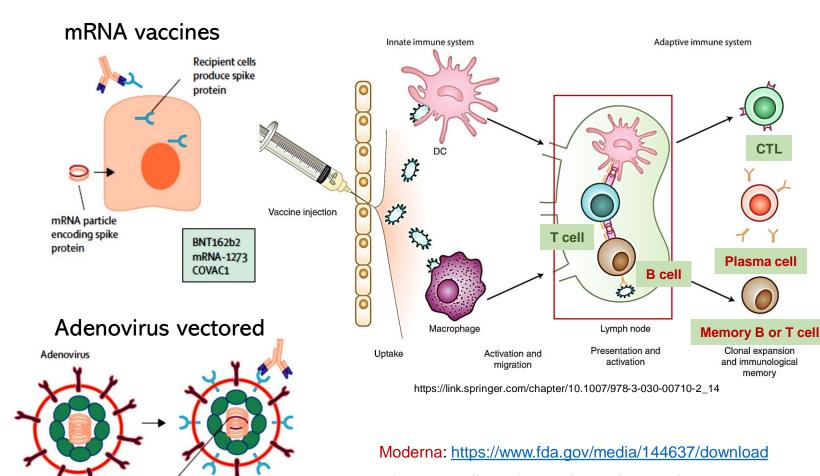
Benefits of CCP and monoclonal antibodies

Convalescent plasma

- Ready made, readily available.
- Can be deployed rapidly.
- Might be only antiviral available in resource limited settings.
- Relatively inexpensive.
- Only immediately available agent for variants.
- Likely effective in immune deficiency.

Monoclonal antibodies

- Require 'manufacture'.
- Take time to produce to scale, resources and cost (they are expensive) limit availability.
- Susceptible to viral escape, emergence of resistance.
- Potential for SQ administration.
- Smaller volume load, not blood product.



SARS-CoV-2 vaccines with FDA EUAs

mRNA

- Packaged in liposomes
- Spike protein mRNA
- Highly immunogenic
- Highly effective prevent severe disease and death
- Adenovirus vectored
 - Nonreplicating
 - Encode spike protein
 - Highly immunogenic
 - Highly effective prevent severe disease and death

Pfizer: https://www.fda.gov/media/144413/download

Janssen: https://www.fda.gov/media/146304/download

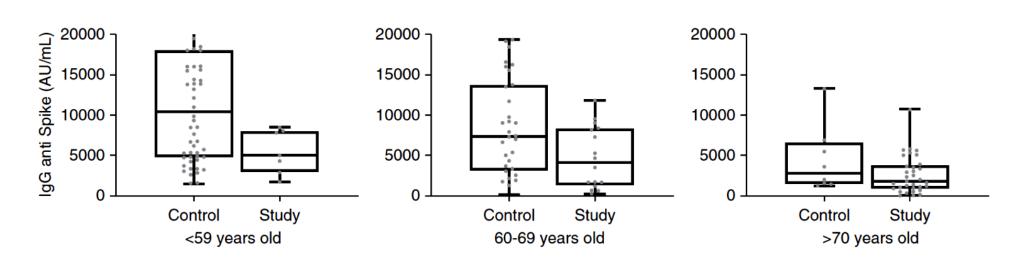
ChAdOx1 nCoV-19

JNJ-78436735

Sputnik-V

Replication incompetent

adenovirus expressing


spike protein

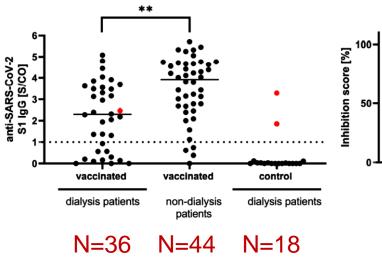
Humoral Response to the Pfizer BNT162b2 Vaccine in Patients Undergoing Maintenance Hemodialysis

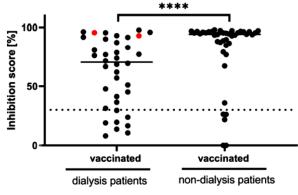
Ayelet Grupper, ^{1,2} Nechama Sharon, ^{3,4} Talya Finn, ^{4,5} Regev Cohen, ^{4,5} Meital Israel, ^{4,6} Amir Agbaria, ^{4,6} Yoav Rechavi, ^{2,3} Idit F. Schwartz, ^{1,2} Doron Schwartz, ^{1,2} Yonatan Lellouch, ^{4,7} and Moshe Shashar, ^{1,4,6}

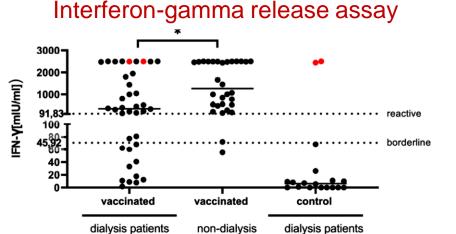
CJASN ePress. Published on April 6, 2021 as doi: 10.2215/CJN.03500321

Spike protein IgG assay

N= 95 controls, N= 56 dialysis patients, stratified by age


Immunogenicity of COVID-19 Tozinameran Vaccination in Patients on Chronic Dialysis


Eva Schrezenmeier¹*, MD; Leon Bergfeld²*, MD; David Hillus³*, MD; Joerg-Detlev Lippert⁴, MD; Ulrike Weber¹, MD; Pinkus Tober-Lau³, MD; Irmgard Landgraf⁵, MD; Tatjana Schwarz², PhD; Kai Kappert⁶, MD; Ana-Luisa Stefanski¹, MD; Arne Sattler⁷, PhD; Katja Kotsch, PhD⁷, Thomas Doerner⁸, MD; Leif Erik Sander³, MD; Klemens Budde¹, MD; Fabian Halleck¹, MD; Florian Kurth^{3,9}*, MD; Victor Max Corman²*, PhD; Mira Choi¹*, MD


https://www.medrxiv.org/content/10.1101/2021.03.31.21254683v1

Spike protein IgG assay

Neutralization assay

patients

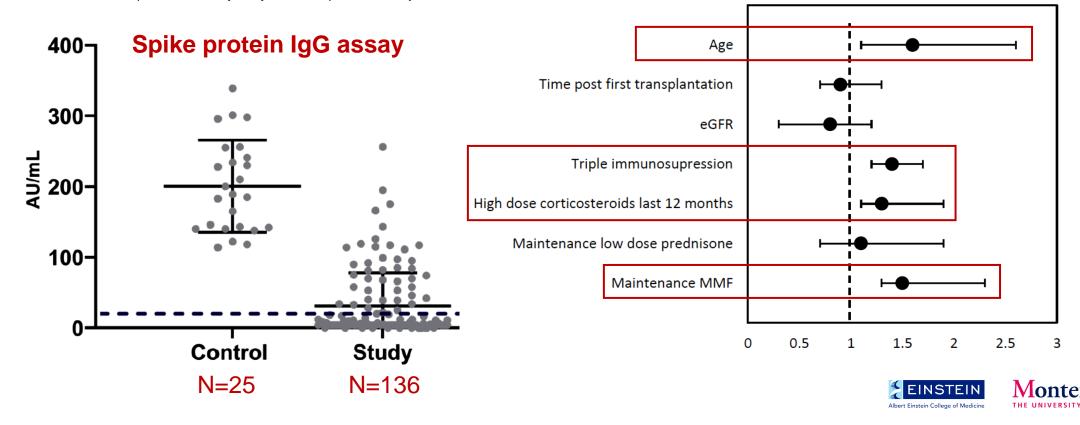
Measure of cellular function

Immunogenicity of SARS-CoV-2 Vaccine in Dialysis

https://www.medrxiv.org/content/10.1101/2021.04.08.21254779v1.full.pdf

```
Authors: Eduardo Lacson, Jr., M.D.,M.P.H.,<sup>1,2</sup> Christos P. Argyropoulos, M.D.,<sup>3</sup> Harold J. Manley, PharmD,<sup>2</sup> Gideon Aweh, M.S.,<sup>2</sup> Andrew I. Chin, M.D.,<sup>4</sup> Loay H. Salman, M.D., M.B.A,,<sup>5</sup> Caroline M. Hsu, M.D.,<sup>1</sup> Doug S. Johnson, M.D.,<sup>2</sup> Daniel E. Weiner M.D.<sup>1</sup>
```

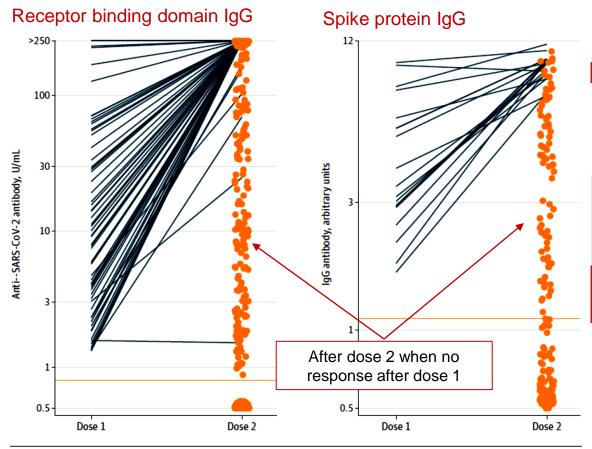
- Retrospective EMR study of vaccine response
- 186 dialysis patients @ 32 clinics, 8 states
 - Median age 68 years; 47% women; 21% Black
 - 97.3% hemodialysis: 26% LTCF; 97% in-center hemodialysis
 - Responders: 165/186: 88%
 - Univariate non-responders: Female; shorter vintage (39 v 61 months); immunosuppressive therapy; receipt of another vaccine within 2 weeks; hospitalization within 14 days; CHF



Reduced humoral response to mRNA SARS-Cov-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus.

Ayelet Grupper^{1,2}, Liane Rabinowich^{2,3}, Doron Schwartz¹, Idit F. Schwartz¹, Merav Ben-Yehoyada³, Moshe Shashar⁵, Eugene Katchman⁴, Tami Halperin⁴, Dan Turner⁴, Yaacov Goykhman², Oren Shibolet^{2,3}, Sharon Levy^{2,3}, Inbal Houri^{2,3}, Roni Baruch^{1,2}, Helena Katchman^{2,3}

https://onlinelibrary.wiley.com/doi/epdf/10.1111/ajt.16615

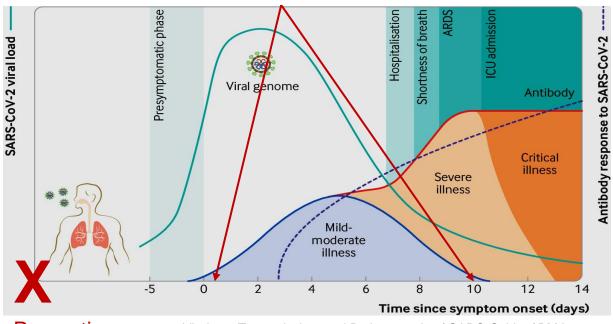


Letters

RESEARCH LETTER

JAMA Published online May 5, 2021

Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients


Table. Demographic and Clinical Characteristics of Study Participants, Stratified by Immune Response to the 2 Doses of SARS-CoV-2 mRNA Vaccine

N = 658	No. (%) by post				
	Dose 1- Dose 2-	Dose 1- Dose 2+	Dose 1+ Dose 2+	P value	
No.	301 (46)	259 (39)	98 (15)		
Age category, y ^a					
18-39	46 (41)	35 (31)	32 (28)		
40-59	86 (42)	94 (46)	26 (13)	.002b	
≥60	169 (50)	129 (38)	40 (12)		
Organ ^f					
Kidney	168 (52)	118 (37)	36 (11)		
Liver	26 (20)	62 (48)	41 (32)		
Heart	42 (43)	45 (46)	10 (10)		
Lung	43 (61)	22 (31)	6 (8)	<.001 ^d	
Pancreas	4 (80)	1 (20)	0		
Other multiorgan	15 (58)	7 (27)	4 (15)		
Years since transplant ⁹					
<3	114 (63)	54 (30)	13 (7)		
3-6	69 (50)	53 (39)	15 (11)		
7-11	54 (38)	61 (43)	26 (18)	.001ь	
≥12	62 (33)	85 (45)	43 (23)		
Maintenance immunosuppression regimen					
Includes antimetaboliteh	268 (57)	167 (35)	38 (8)	<.001 ^d	
Does not Include antimetabolitei	33 (18)	92 (50)	60 (32)		
Vaccinei					
mRNA-1273 (Moderna)	124 (40)	116 (38)	67 (22)		
BNT162b2 (Pfizer-BioNTech)	175 (51)	138 (40)	29 (8)	<.001 ^d	

Covid-19 therapies and SARS-CoV-2 vaccines in patients with kidney disease

- Chronic kidney disease and dialysis
 - Vaccination is essential.
 - Outpatients with symptoms ≤10 days - Mab cocktail.
 - Inpatients: per protocols.
- Transplant
 - Current vaccines are likely to be poorly immunogenic.
 - Hopefully, prophylaxis with CCP or Mabs is on the horizon.
 - Inpatients: per protocols.

Immediate/early Treatment with Mabs

Prevention with vaccine or prophylaxis

Virology, Transmission, and Pathogenesis of SARS-CoV-2 / BMJ 2020

